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Main points and outline

• Small-x evolution with BFKL

• Probing non-linear evolution via saturation boundary

• Problems of NLL evolution

• Improving small-x evolution with DGLAP:  RG improved BFKL

• Results for fixed and running coupling NLL evolution

• RG improved BFKL and the dip

• RG improved non-linear evolution



Small-x evolution with BFKL

• BFKL is the main ingredient of small-x studies. Eq for “Gluon Green’s 
function” G in Regge limit:

• Kernel known to NLL order: K(k�, k) = αsK0(k
�, k) + α2

sK1(k
�, k)

∂ln ζG(ζ, k, k0) =

�
d2k�K(k, k�)⊗G(ζ, k�, k0)

Cross sections calculated as: σAB =

�
d2k1d

2k2ΦA(k1)G(ζ, k1, k2)ΦB(k2)
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Non-linear Evolution from “saturation boundary”

• Form of generic non-linear evolution eq:

∂ln ζF = KBFKL ⊗ Fζ + Γ2 ⊗ F 2
ζ + Γ3 ⊗ F 3

ζ + . . .

In coordinate space, NLL BK:

1−N (ζ, r) =

�
d2k

(2π)2
eik·rF (ζ, k)

∂ζN = KBFKL ⊗N +K2 ⊗ (N 2 −N 3)

Non-linear parts can be rather complicated and very difficult to deal with even 
numerically. 

Main properties of evolution driven by linear kernel. Non-linear term provides a 
“cut-off” to suppress strong linear growth.  

Thus effectively much simpler to:

where A = {N ,F}

∂Y A = KBFKL ⊗A+ boundary∂Y A = KBFKL ⊗A+ nonlinear

Y = ln 1/ζand



Problems of NLL evolution and (a) cure

LL eigenvalue: χ0(γ) = 2ψ(1)− ψ(γ)− ψ(1− γ) ∼ 1
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12Energy scale (kin. const)
DGLAP

Running coupling

Negative poles cause instability of solution.                         turns negative and oscillate.F(ζ, k) and σ

Same terms appear in NLL BK as well, thus we can expect problems... 

Cure: Subtract these negative poles and demand agreement with full DGLAP and kin. 
constraint. Leads to “RG-improved” BFKL:

No such procedure yet for BK but we can here study RG improved BFKL with 
saturation boundary:

LL w kin.const.
DGLAP terms
w kin. const. Subtractions

∂Y F = Kresum ⊗ F + boundary

Different resummation procedures 
exist: 

CCSS, ABF, TW...

All consistent with each other. 
We use here CCSS (B) formalism.

χresum = χ0(γ,ω) + χcoll(γ,ω) + χ̃1(γ)

ω = αsχ



Appetizer: NLL evolution with fixed coupling
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Full NLL evolution with running coupling

Better behavior at high k due to running coupling.  However,  HUGE 
uncertainty on scale choice: some choice ok but some terrible.  

Choice: αs(q)K0 + α2
s(max(k, k�))K1 Y = 2, 6, 10, 14

Blue: rcLL
Red: rcNLLAnti-collinear pole still there and 

solution goes negative at low k

Apply boundary to 
regulate low k region

Large difference in 
sat. scale between 
rcLL and rcNLL evolution

Different boundary condition gives very similar 
results, again large difference LL vs NLL.

These results look ok for rcNLL, but again this is highly dependent on precise choice of scale. Thus 
NLL evolution, linear or non-linear, is very unstable!!  Resummation needed.



Resummed evolution: The dip and implications on 
saturation

Splitting function extracted from resummed 
evolution has characteristic “dip” structure

“dip”

Originates from interplay between positive 
LL terms and negative NLL terms.  Also found 
in ABF and TW.

Consequently it takes “time” for small x evolution to fully set in. 
Similar phenomenon observed in “unified BFKL-DGLAP” evolution and in CCFM.

Obviously important for physics of saturation and has implications for phenomenology.

Plot from CCSS: hep-ph/0307188

Precise position of dip depends 
on      and depth on      and αs αs nf



RG improved evolution: Linear and non-linear

Blue: Resummed
Black: NLL
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Y = 4, 8, 12
Sat. scale from 
resummed evolution

Fixed coupling.  Variation of 
dip with coupling

Existence of dip clearly delays growth of       At which Y exactly 
the growth sets in depends on precise parameters, initial 
condition etc. 
We can answer this only after serious application to 
phenomenology.

Qs

Nonetheless the structure is there and is important!


